
Core C++ 2025
19 Oct. 2025 :: Tel-Aviv

(Intel)ligent Verification:

Applying AI to Tame

Microprocessor Complexity

Lotem Dalal
1

Lotem Dalal

• Curious

• Lifelong learning advocate

• Science and technology oriented

2

Agenda

• Introduction - CPU R&D cycle and verification

• why using AI for CPU verification

• Main uses of AI in CPU verification @ intel

3

Introduction
Designing a CPU
core is like
coordinating a
million tiny,
autonomous teams
- each with different
clocks, priorities
and failure modes -
to produce one
perfectly ordered
stream of
instructions.
Proving it never
fails, for decades.

4

introduction

• Micro-processor consists mainly of:

• SoC (system on chip) – peripheral subsystems
(GPU, I/O controllers, memory controller, accelerators)

• CPU (central processing unit) – processing
cores

(execution units, caches, control)

• FW (firmware) – hardware-software interface
embedded programmable SW layer (µcode, BIOS)

CPU

SoC

FW

5

CPU CORE R&D cycle

• Core of a CPU is the most complex IP, with:

• 2M+ Files

• 500M+ transistors

• 1k+ Engineers developing it

CPU

SoC

FW

6

CPU CORE Verification

• Chip verification aims assuring no bugs are
found in the DUT (design under testing).

• The methodology to achieve it consists of:

• Stimuli – injecting constrained-random inputs.

• Checking – rules the DUT must follow

• Coverage - quantitative indicators that show how
much of the design or specification has been
verified.

CPU

input

output

7

CPU CORE Verification - overview

• Each project includes the following stages:

1. Planning
• Architectural spec review
• Design & Verification plans

2. Execution
• Introducing new features
• Updating existing features

3. Analysis
• Focus on quality – debug and coverage

4. Closure
• Closing coverage gaps
• Bug fix is limited

CPU

8

CPU CORE Verification - overview

• Average time estimation of the stages:

1. Planning 10% (*dynamic)
• Architectural spec review
• Design & Verification plans

2. Execution 70%
• Introducing new features
• Updating existing features

3. Analysis 15%
• Focus on quality – debug and coverage

4. Closure 5%
• Closing coverage gaps
• Bug fix is limited

CPU

Most of the CPU (pre-Si) projects take ~2 years

CPU CORE Verification – domain level

• Each project includes the following phases:

1. Planning
• Architectural spec review
• Design & Verification plans

2. Execution
• Introducing new features
• Updating existing features

3. Analysis
• Focus on quality – debug and coverage

4. Closure
• Closing coverage gaps
• Bug fix is limited

PM I/O I/Ocontrol

memory Cache

arithmetic

CacheCache

EXE µ-code OOO

Most of the verification is done in a domain level
10

CPU CORE Verification – domain level

• Each project includes the following phases:

1. Planning
• Architectural spec review
• Design & Verification plans

2. Execution
• Introducing new features
• Updating existing features

3. Analysis
• Focus on quality – debug and coverage

4. Closure
• Closing coverage gaps
• Bug fix is limited

Most of the verification is done in a domain level

Core
(Master)

PM

cash

ALU

11

CPU CORE Verification – core level

• Each project includes the following phases:

1. Planning
• Architectural spec review
• Design & Verification plans

2. Execution
• Introducing new features
• Updating existing features

3. Analysis
• Focus on quality – debug and coverage

4. Closure
• Closing coverage gaps
• Bug fix is limited

Main functionalities are also done in a core level

CPU

12

How can AI enhance CPU R&D?

13

How can AI enhance CPU R&D?

• As technology advances, so does the
CPU complexity – making it harder to
simulate ALL possible scenarios and
getting FULL coverage.

CPU

input

output

14

CPU

input

output

How can AI enhance CPU R&D?

• As technology advances, so does the
CPU complexity – making it harder to
simulate ALL possible scenarios and
getting FULL coverage.

• Using AI and ML in CPU
verification allows us to make
the best out of the R&D
resources.

CPU

input

output

15

CPU

input

output

1. Optimizing gating lists

• “gate keeper” – identifying level 0
errors/bugs before merging to repo

• Cover wide range of scenarios

• Not randomized

• Save compute resources

• Minimum runtime – enhance R&D productivity

Core
(Master)

PM

cash

ALU

16

1. Optimizing gating lists

• “gate keeper” – identifying level 0
errors/bugs before merging to repo

• How can AI help me?
• Analyze already written tests
• Suggest minimum tests that cover maximum

scenarios
• Improving runtime of tests

Core
(Master)

PM

cash

ALU

17

2. Optimizing Weekly regression

• Predefined high count static lists running
on a weekly basis

• Cover all desired scenarios

• Maximum randomization

• Save compute resources

• Minimum runtime – enhance R&D
productivity

18

2. Optimizing Weekly regression

• Predefined high count static lists running on a weekly basis

• How can AI help me?
• Analyze static lists (“batch 0”) results → recommend new lists (“ML

batches”)
• Running ML lists based on prior runs – those lists are dynamic.

19

3. Intelligent stimuli generation

• Our target is to maximize DUT coverage while maintaining
moderate compute resources

• We want to maximize coverage
• Code coverage
• Functional coverage

• We want to minimize:
• Number of tests
• simulation runtime

20

3. Intelligent stimuli generation

• How can AI help?
• identify redundant or ineffective tests in weekly regression

• Suggest configurations to enhance
coverage (non hit/ low count
scenarios)

• Analysis of the total coverage map,
point out blind spots that
otherwise might be skipped

21

4. Reproducing rare failures

• During Closure stage we focus on debug and coverage gaps

• Debugging rare failure clusters is challenging:
• Low test count
• less data for ML analysis
• Not reproduce in each weekly regression
• lower priority for debug
• The rarest failures sometimes “hide” a unique RTL bug

22

4. Reproducing rare failures

• During Closure stage we focus on debug and coverage gaps

• Using AI we can:
• review historical regression data
• Analyze the data and find patterns
• Creating a list with ML configurations

• Analyze the results to optimize ML recommendations

Prob(X)=50%

Input A Input B Input C Input D Target

TRUE TRUE FALSE FALSE X

TRUE FALSE FALSE TRUE X

TRUE TRUE FALSE TRUE Y

FALSE FALSE TRUE FALSE Y

FALSE FALSE TRUE TRUE Y

TRUE TRUE FALSE TRUE X

Prob(X given A=True and C=False)=75%

23

4. Reproducing rare failures

• During Closure stage we focus on debug and coverage gaps

• Using AI we can:
• review historical regression data
• Analyze the data and find patterns
• Creating a list with ML configurations

• Analyze the results to optimize ML recommendations

Prob(X)=50%

Input A Input B Input C Input D Target

TRUE TRUE FALSE FALSE X

TRUE FALSE FALSE TRUE X

TRUE TRUE FALSE TRUE Y

FALSE FALSE TRUE FALSE Y

FALSE FALSE TRUE TRUE Y

TRUE TRUE FALSE TRUE X

Prob(X given A=True and C=False)=75%

24

summary

• CPU R&D and verification is a highly complicated project

• As technology advances, the challenge of achieving high
confidence in the product prior to TAPE-IN is increasing

• AI is optimizing many of the verification tasks to enhance
productivity and better use our resources.

25

Thank you!

• annieda666@yahoo.com

• linkedin.com/in/lotem-dallal/

26

mailto:annieda666@yahoo.com
mailto:annieda666@yahoo.com
mailto:annieda666@yahoo.com
mailto:annieda666@yahoo.com

	Default Section
	Slide 1: (Intel)ligent Verification: Applying AI to Tame Microprocessor Complexity
	Slide 2: Lotem Dalal
	Slide 3: Agenda

	introduction
	Slide 4: Introduction
	Slide 5: introduction
	Slide 6: CPU CORE R&D cycle
	Slide 7: CPU CORE Verification
	Slide 8: CPU CORE Verification - overview
	Slide 9: CPU CORE Verification - overview
	Slide 10: CPU CORE Verification – domain level
	Slide 11: CPU CORE Verification – domain level
	Slide 12: CPU CORE Verification – core level

	AI driven verification
	Slide 13: How can AI enhance CPU R&D?
	Slide 14: How can AI enhance CPU R&D?
	Slide 15: How can AI enhance CPU R&D?

	AI solutions for CPU verification
	Slide 16: 1. Optimizing gating lists
	Slide 17: 1. Optimizing gating lists
	Slide 18: 2. Optimizing Weekly regression
	Slide 19: 2. Optimizing Weekly regression
	Slide 20: 3. Intelligent stimuli generation
	Slide 21: 3. Intelligent stimuli generation
	Slide 22: 4. Reproducing rare failures
	Slide 23: 4. Reproducing rare failures
	Slide 24: 4. Reproducing rare failures

	summary
	Slide 25: summary
	Slide 26: Thank you!

