@ Core C++ 2025

. 19 Oct. 2025 :: Tel-Aviv

(Intel)ligent Verification:
Applying Al to Tame
Microprocessor Complexity

Lotem Dalal



Lotem Dalal

* Curious
* Lifelong learning advocate

* Science and technology oriented



Agenda
* Introduction - CPU R&D cycle and verification
* why using Al for CPU verification

e Main uses of Al in CPU verification @ intel



Introduction

Designing a CPU
core is like
coordinating a
million tiny,
autonomous teams
- each with different
clocks, priorities
and failure modes -

to produce one
perfectly ordered
stream of
instructions.

Proving it never
fails, for decades.




Introduction

* Micro-processor consists mainly of:

* SoC (system on chip) — peripheral subsystems
(GPU, I/0O controllers, memory controller, accelerators)

* CPU (central processing unit) — processing
cores

(execution units, caches, control)

* FW (firmware) — hardware-software interface

embedded programmable SW layer (ucode, BIOS)




CPU CORE R&D cycle

* Core of a CPU is the most complex IP, with:

e 2M+ Files

e 500M+ transistors

* 1k+ Engineers developing it




CPU CORE Verification

* Chip verification aims assuring no bugs are
found in the DUT (design under testing).

* The methodology to achieve it consists of:

e Stimuli - injecting constrained-random inputs.
* Checking -rules the DUT must follow

 Coverage - quantitative indicators that show how
much of the design or specification has been
verified.



CPU CORE Verification - overview

 Each projectincludes the following stages:

1. Planning 2

* Architectural spec review

* Design & Verification plans
2. Execution '/

* Introducing new features

* Updating existing features
3. Analysis &

* Focus on quality — debug and coverage
4. Closure

* Closing coverage gaps

* Bug fix is limited



CPU CORE Verification - overview

* Average time estimation of the stages:

1. Planning 5 10% (*dynamic)
* Architectural spec review
* Design & Verification plans
2. Execution £/ 70%
* Introducing new features
* Updating existing features
3. Analysis @ 15%
* Focus on quality — debug and coverage
4. Closure 5%
* Closing coverage gaps
* Bug fix is limited

Most of the CPU (pre-Si) projects take ~2 years



* Each project includes the following phases:

Planning >
* Architectural spec review control
* Design & Verification plans

Execution "

* Introducing new features memory
* Updating existing features

Analysis @&

« Focus on quality — debug and coverage arithmetic
Closure

* Closing coverage gaps
* Bug fix is limited

Most of the verification is done in a domain level

CPU CORE Verification —domain level

10



CPU CORE Verification —domain level

* Each project includes the following phases:

1. Planning 2

* Architectural spec review

* Design & Verification plans
2. Execution '/

* Introducing new features

* Updating existing features
3. Analysis &

* Focus on quality — debug and coverage
4. Closure

* Closing coverage gaps

* Bug fix is limited

Most of the verification is done in a domain level

11



CPU CORE Verification — core level

* Each project includes the following phases:

1. Planning 2

* Architectural spec review

* Design & Verification plans
2. Execution '/

* Introducing new features

* Updating existing features
3. Analysis &

* Focus on quality — debug and coverage
4. Closure

* Closing coverage gaps

* Bug fix is limited

Main functionalities are also done in a core level

12



How can Al enhance CPU R&D?



How can Al enhance CPU R&D?

* As technology advances, so does the
CPU complexity — making it harder to
simulate ALL possible scenarios and
getting FULL coverage.

<

14



How can Al enhance CPU R&D?

* As technology advances, so does the
CPU complexity — making it harder to
simulate ALL possible scenarios and
getting FULL coverage.

* Using Al and ML in CPU
verification allows us to make @
the best out of the R&D
resources.

J

15



1. Optimizing gating lists

» “gate keeper” —identifying level O
errors/bugs before merging to repo

* Cover wide range of scenarios

* Not randomized

* Save compute resources

* Minimum runtime —enhance R&D productivity

16



1. Optimizing gating lists

» “gate keeper” —identifying level O
errors/bugs before merging to repo

* How can Al help me?
* Analyze already written tests

* Suggest minimum tests that cover maximum
scenarios

* Improving runtime of tests

17



2. Optimizing Weekly regression

* Predefined high count static lists running
on a weekly basis

e Cover all desired scenarios

* Maximum randomization

 Save compute resources

* Minimum runtime —enhance R&D
productivity

18



2. Optimizing Weekly regression

* Predefined high count static lists running on a weekly basis

* How can Al help me?

* Analyze static lists (“batch 0”) results 2 recommend new lists (“ML
batches”)

* Running ML lists based on prior runs — those lists are dynamic.

\l ‘ debug

Machine Learming algorithm
Decisions calculated from the data

! &
® o



3. Intelligent stimuli generation

* Our target is to maximize DUT coverage while maintaining
moderate compute resources

* We want to maximize coverage

 Code coverage
* Functional coverage

e We want to minimize:

* Number of tests
e simulation runtime

20



3. Intelligent stimuli generation

* How can Al help?
* identify redundant or ineffective tests in weekly regression

ML Debugged and Unique Bugs for each team

Unique ML CTE/Instr

» Suggest configurations to enhance ™ _ euoged by e
coverage (non hit/ low count == Debugged by ML RTL
scenarios) .

+ 200
=

* Analysis of the total coverage map, -
point out blind spots that
otherwise might be skipped

100

50

2,
*

Team



4. Reproducing rare failures

* During Closure stage we focus on debug and coverage gaps

* Debugging rare failure clusters is challenging:
* Low test count
less data for ML analysis
Not reproduce in each weekly regression
* lower priority for debug
The rarest failures sometimes “hide” a unique RTL bug

22



4. Reproducing rare failures

* During Closure '@ stage we focus on debug and coverage gaps

* Using Al we can:
* review historical regression data
* Analyze the data and find patterns
* Creating a list with ML configurations

4

* Analyze the results to optimize ML recommendations

Prob(X)=50%
Prob(X given A=True and C=False)=75%

Input C Input D

FALSE FALSE -

FALSE TRUE

Input B

Input A

TRUE

TRUE

FALSE

TRUE

TRUE TRUE FALSE TRUE I

FALSE FALSE TRUE FALSE -

FALSE FALSE TRUE TRUE

TRUE

TRUE TRUE FALSE



4. Reproducing rare failures

* During Closure '@ stage we focus or

* Using Al we can:
* review historical regression data
* Analyze the data and find patterns
* Creating a list with ML configurations

4

* Analyze the results to optimize ML recommendations

— =~ lQrgde gaps

Examples frop PNC:

4

Prob(X)=50%
Prob(X given A=True and C=False)=75%

Input C Input D

FALSE FALSE -

FALSE TRUE

Input A Input B

TRUE TRUE

TRUE FALSE

TRUE TRUE FALSE TRUE I

FALSE FALSE TRUE FALSE -

FALSE FALSE TRUE TRUE

TRUE TRUE FALSE TRUE




summary

* CPU R&D and verification is a highly complicated project

* As technology advances, the challenge of achieving high
confidence in the product prior to TAPE-IN is increasing

* Al is optimizing many of the verification tasks to enhance
productivity and better use our resources.

25



Thank you!

4 * aNniedab66@yahoo.com

yahoo!

m * linkedin.com/in/lotem-dallal/

26


mailto:annieda666@yahoo.com
mailto:annieda666@yahoo.com
mailto:annieda666@yahoo.com
mailto:annieda666@yahoo.com

	Default Section
	Slide 1: (Intel)ligent Verification: Applying AI to Tame Microprocessor Complexity
	Slide 2: Lotem Dalal
	Slide 3: Agenda

	introduction
	Slide 4: Introduction
	Slide 5: introduction
	Slide 6: CPU CORE R&D cycle
	Slide 7: CPU CORE Verification
	Slide 8: CPU CORE Verification - overview
	Slide 9: CPU CORE Verification - overview
	Slide 10: CPU CORE Verification – domain level
	Slide 11: CPU CORE Verification – domain level
	Slide 12: CPU CORE Verification – core level

	AI driven verification
	Slide 13: How can AI enhance CPU R&D?
	Slide 14: How can AI enhance CPU R&D?
	Slide 15: How can AI enhance CPU R&D?

	AI solutions for CPU verification
	Slide 16: 1. Optimizing gating lists
	Slide 17: 1. Optimizing gating lists
	Slide 18: 2. Optimizing Weekly regression
	Slide 19: 2. Optimizing Weekly regression
	Slide 20: 3. Intelligent stimuli generation
	Slide 21: 3. Intelligent stimuli generation
	Slide 22: 4. Reproducing rare failures
	Slide 23: 4. Reproducing rare failures
	Slide 24: 4. Reproducing rare failures

	summary
	Slide 25: summary
	Slide 26: Thank you!


